Accurate Supervised and Semi-Supervised Machine Reading for Long Documents

نویسندگان

  • Daniel Hewlett
  • Llion Jones
  • Alexandre Lacoste
  • Izzeddin Gur
چکیده

We introduce a hierarchical architecture for machine reading capable of extracting precise information from long documents. The model divides the document into small, overlapping windows and encodes all windows in parallel with an RNN. It then attends over these window encodings, reducing them to a single encoding, which is decoded into an answer using a sequence decoder. This hierarchical approach allows the model to scale to longer documents without increasing the number of sequential steps. In a supervised setting, our model achieves state of the art accuracy of 76.8 on the WikiReading dataset. We also evaluate the model in a semi-supervised setting by downsampling the WikiReading training set to create increasingly smaller amounts of supervision, while leaving the full unlabeled document corpus to train a sequence autoencoder on document windows. We evaluate models that can reuse autoencoder states and outputs without finetuning their weights, allowing for more efficient training and inference.

منابع مشابه

Text classification from unlabeled documents with bootstrapping and feature projection techniques

Many machine learning algorithms have been applied to text classification tasks. In the machine learning paradigm, a general inductive process automatically builds a text classifier by learning, generally known as supervised learning. However, the supervised learning approaches have some problems. The most notable problem is that they require a large number of labeled training documents for acc...

متن کامل

Semi-Supervised Learning for Web Text Clustering

Supervised learning algorithms usually require large amounts of training data to learn reasonably accurate classifiers. Yet, for many text classification tasks, providing labeled training documents is expensive, while unlabeled documents are readily available in large quantities. Learning from both, labeled and unlabeled documents, in a semi-supervised framework is a promising approach to reduc...

متن کامل

Populating Ontologies with Data from OCRed Lists

A flexible, accurate, and efficient method of automatically extracting facts from lists in OCRed documents and inserting them into an ontology would help make those facts machine searchable, queryable, and linkable and expose their rich ontological interrelationships. To work well, such a process must be adaptable to variations in list format, tolerant of OCR errors, and careful in its selectio...

متن کامل

Invited Talk: Domain-adaptation of Natural Language Processing Tools for RE

Natural language processing tools like part-of-speech taggers and parsers are being used in a variety of applications involving natural language, including RE. Such tools, based on statistical models of language, are learnt via supervised machine learning algorithms from human-annotated data. Due to their dependence on annotated data, which is limited in size and genre, these models have a fall...

متن کامل

Text Classification Based On Manifold Semi- Supervised Support Vector Machine

This article presents a solution along with experimental results for an application of semi-supervised machine learning techniques and improvement on the SVM (Support Vector Machine) based on geodesic model to build text classification applications for Vietnamese language. The objective here is to improve the semi-supervised machine learning by replacing the kernel function of SVM using geodesi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

متن کامل
عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017